
Visualizing Dynamical Systems

Matthew Jee

March 2014

Abstract

This paper presents an application that facilitates the
exploration of the relationship between the parameter
space and state space of a dynamical system. The ap-
plication can integrate and display three-dimensional,
first-order differential equations, with an interface to
‘scrub’ through the parameter space in realtime.

1 Introduction

1.1 Motivation

A dynamical system is a mathematical model for de-
scribing the evolution of a system by a fixed rule, usu-
ally over time. More formally, a system consists of a
state space, and a function mapping a given point
in the state space and a particular time to a new
position in the state space [1]. In addition to time
and the current position, the evolution function of a
dynamical system is usually dependent on set of pa-
rameters. It can be difficult to discern the effects of
a system’s parameters on its evolution by analyzing
its rule function alone. Also, qualitative features of
a dynamical system, such as critical points and limit
cycles, can be much easier to discover ‘at a glance’
when the system is plotted visually. The aim of this
project is to create an visualization tool that facili-
tates the exploration of the relationship between the
parameter and state space of dynamical systems.

1.2 Original Goals

This application will render the dynamical system by
first computing the evolution of a set of points in
the state space using numerical integration. These
points will be mapped to spatial dimensions and ren-
dered as a path. Consequently, the application will
be limited to computing and rendering systems with
a state space of three or fewer dimensions. The appli-
cation will also attempt to detect critical points and

limit cycles within each evolution and mark them in
the rendering. Methods for visualizing the stability
of parameter configurations will be explored.

The application will be able to render paths for
both discrete and continuous systems. However, con-
tinuous systems will be limited to first-order differ-
ential equations because it is more computationally
expensive to integrate systems of arbitrary degree. If
there is time, a more general integration scheme will
be implemented.

The application will present controls for modifying
the parameters of the system. Whenever a parameter
is modified, the system evolution will be re-computed
and re-rendered. If this turns out to be too com-
putationally expensive to do in real time, methods
for progressively computing the evolution will be ex-
plored. This kind of interactivity will allow the user
to gain a more intuitive sense of the relation between
parameters and the state space.

Functions for the Lorenz System, the Rossler Sys-
tem, and the Logistic Map, will be built in to the
application. If time permits, a system that allows
the user specified evolution functions will be imple-
mented.

1.3 Related Works

There exist many programs that can render dynami-
cal systems. Mathematica has the capability to plot
a massive variety of systems and equations, dynami-
cal systems included [11]. Matlab similarly provides
ways to visualize dynamical systems. Both are prob-
ably more flexible than this project in terms of what
can be integrated, but have more cumbersome inter-
action.

There is another program called Chaoscope,
which renders very nice looking pictures of chaotic
systems[8]. This aim of this project is similar to that
of Chaoscope, but with less of a focus on aesthetic
value and more on exploration of system properties.

1



2 Implementation

2.1 Visualization Methods

The application can display an arbitrary number of
windows, each containing a visualization of a single
dynamical system. These systems can either be cho-
sen from one of the defaults (Lorenz or Rossler), or
loaded from a Javascript file (see 2.2 for details).

Each window consists of three primary compo-
nents:

• The Parameter-Space View

• The State-Space View

• The ‘Sidebar’ manipulation controls

The parameter-space view is used to ‘scrub’ the
parameter space of the dynamical system. Within
the view are two ‘handles’ that can be moved around
the space with the mouse. These two handles are the
start and end points of a linear path through the pa-
rameter space, so a gradient-colored path is drawn
between them. This path forms the set of parameter
configurations that are rendered in the state-space
view. Since the path is continuous, it is first dis-
cretized into a finite number of configurations before
being used to evaluate evolutions. The number of
parameter configurations to evaluate can be set by a
slider labeled ‘evolutions’.

The state-space view contains a number of seeds
that are used to specify the starting position for evo-
lutions. For each of these starting positions, one path
is evaluated and rendered for each parameter configu-
ration given by the parameter-space view. Each path
in the state-space view is given a color that corre-
sponding to a color along the path in the parameter-
space view. By doing this, it is possible to see the
qualitative effects of transitioning linearly from one
parameter configuration to another. In particular,
this multi-evolution visualization makes it easy to see
bifurcations.

This system works very well for certain dynamical
systems, but there are some catches. One limitation
is that the parameter-space view is only capable of
displaying three dimensions. This is fine for systems
with three or less parameters (Lorenz, Rossler, Chen-
Lee), but systems with more parameters (Lorenz-84)
cannot have their entire parameter space mapped to
the view. To alleviate this concern, there are three
menus which users can use to choose which param-
eters they wish to map onto the axes. Even with

this solution, there still exists a need to manipulate
parameters that are not mapped to the parameter-
space view. To fix this issue, a table of all the pa-
rameters and their current start and end values is
displayed beside the spatial views. Through this ta-
ble, the user can enter specific parameters by typing
and both views will update automatically with the
new configuration.

There is also the issue of integration error. At some
points in the state-space, the integration becomes
very jumpy and inaccurate. This was addressed by
providing a slider to change the integration step size.
A better way to address this would be to use adaptive
Runge-Kutta methods. I was not able to implement
this in time.

During development, I considered implementing
the ability to specify arbitrary splines within the pa-
rameter space, rather than just a simple line with two
handles. This would allow more flexible analysis of
transitions between configurations. However, it was
determined that this would require a large amount of
work only tangentially related to the project (a spline
renderer and manipulation interface), so it was not
implemented.

2.2 Technical Details

The application code is more or less split into four
components:

• Dynamical Systems Simulator (C++)

• Renderer (C++)

• Custom-System Interface (C)

• User Interface (C, Objective-C)

Dynamical Systems Simulator The Dynamical
Systems Simulator is written in C++ to take advan-
tage of the STL, but still maintain some portability,
which is not so great with Objective-C. In retrospect,
this was not a good decision (see 2.2). The simulator
is broken into three classes:

• Integrator

This class performs numerical integration, given
an Integrable, a position in state-space, and a set
of parameters. An Integrable is defined to be a
function pointer. An RK4 and Euler Integrator
were written. A ‘discrete’ integrator, evaluating
rules of the form xn+1 = f(xn, p), was planned,
but was not created.

2



Figure 1: Early Integrator Test

• Parameter

Parameter provides an abstraction over parame-
ter values. Each Parameter contains a min/start,
max/end, and current value.

• DynamicalSystem

This class encapsulates and integrator, and inte-
grable, and a set of parameters.

Renderer The renderer is a simple library that I
wrote in 2013 that provides convenient abstractions
over OpenGL [5]. It is slightly modified to interoper-
ate well with the Dynamical Systems Simulator. The
Vector3 class, which is shared with the simulator, was
switched from floats to doubles for improved preci-
sion.

User Interface The Dynamical Systems Simulator
was prototyped with GLFW [6] providing the window
and OpenGL context. The final application uses Co-
coa [7] for the user interface and windowing system.
Cocoa was chosen because there are graphical tools
to do GUI layout, which is a pain to do in code. All
of the application viewports share a single OpenGL
3.2 context, all running on the same thread. Each
view is updated lazily to save CPU time.

Custom System Interface The Custom System
Interface is the code that maps user-specified dy-
namical systems written in a scripting language to
the Dynamical Systems Simulator. Originally, the
plan was to use Python as the scripting language.

However, Javascript was chosen instead for several
reasons. Firstly, the embedded Python API does
not allow for multiple Python contexts/interpreters,
which is almost necessary given the way that the
Dynamical Systems Simulator was implemented (see
below for details). Secondly, the speed of modern
Javascript runtimes is surprisingly fast compared to
the current Python runtime. The Benchmarks Game
[4] shows Google’s V8 Javascript engine performing
much faster than Python 3. This project does not use
V8, but instead uses Webkit’s JavascriptCore, which
is somewhat slower than V8 but still quicker than
Python.

Implementing user-specified systems was tricky be-
cause the evolution functions are represented by func-
tion pointers, and it is not possible to add new func-
tions at runtime. To work around this, each user
function is given it’s own Javascript context. Each
context contains a function named ‘evolution’ which
evaluates the user function. The engine maintains a
single ‘current’ context which is used when evaluat-
ing evolution functions. Thus, all of the custom user
functions can be routed through a single C function,
as long as the current context is switched appropri-
ately. This explanation may not be so clear, so a
diagram has been provided.

The Javascript evolution function engine is not re-
entrant and not suitable for multithreading, which
is problematic if the application were to be scaled
to multiple threads for performance. However, this
problem really lies with the way the dynamical sys-
tem library depends on function pointers. C++ func-
tors and Objective-C blocks were considered as al-
ternatives to function pointers, but this results in a
strange mix of C, Objective-C, and C++ (see 2.2).

An Aside on Languages This project uses a
mix of C, C++, and Objective-C. This is not good.
The resulting codebase is a very messy mix of C++
style object-orientation, Objective-C style object-
orientation, and C procedurality. Most of the ren-
derer and simulator could be rewritten in straight C,
which would do wonders for the code complexity. At
the start of the project it seemed like a good idea
to take advantage of an existing C++ codebase and
mix it with an Objective-C UI to speed up develop-
ment. Alas, this only served to make development
more difficult in the later stages.

3



Figure 2: Rabinovich-Fabrikant Equations, γ = 0.87, α = −0.58→ γ = 0.46, α = 1.61

Figure 3: Lorenz System, ρ = −1.98, σ = −1.85, β = 1.60→ ρ = −1.11, σ = 4.61, β = −3.90

4



Figure 4: Transitioning from ρ = 0, σ = 0, β = 0 to ρ = 28, σ = 10, β = 8
3 in the Lorenz System

Figure 5: Chen-Lee System, a = 1.41, b = −2.04, c = 2.10→ a = −1.01, b = 3.95, c = −2.49

5



3 Results

What follows are several qualitative analyses of ren-
derings generated by the application. I am not very
well versed in the study of dynamical systems, so the
analyses are crude and may not make much sense;
they are just meant to show what kind of patterns
the visualization can reveal.

3.1 Rabinovich-Fabrikant Equations

Figure 2 shows the application rendering several evo-
lutions of the Rabinovich-Fabrikant equations [12] for
some arbitrary parameter values. This set of equa-
tions only has two parameters, so only the Red and
Green axes are mapped to parameters. The evo-
lutions close to the start parameter configuration
are displayed in ‘cooler’ (blue, green) colors, while
the evolutions closer to the end configuration are
‘warmer’ (orange, red). The rendering shows that
this transition in parameters results in shorter cycles
that are closer to the origin.

The rendering was generated with the following
custom system definition:

parameters = ["gamma", "alpha"];

evolution = function(param, x, y, z) {

return [

y*(x-1+x*x)+param[0]*x,

x*(3*z+1-x*x)+param[0]*y,

-2*z*(param[1]+x*y)

]

}

3.2 Lorenz System

Similar to the Rabinovich-Fabrikant example, figure
3 shows a set of evolutions for an arbitrarily cho-
sen configuration of parameters, but for the Lorenz
System. It is clear from the rendering that evolu-
tions with a configuration close to ρ = −1.98, σ =
−1.85, β = 1.60 have a tendency to ‘explode’ towards
infinity. As the parameter configuration tends to-
wards ρ = −1.11, σ = 4.61, β = −3.90, the evolution
paths cling more tightly to the ‘vertical’ axis, which
is shown by the blue-green cylindrical paths within
the wider, reddish cylindrical paths. Then very close
to the end configuration, the system evolves towards
infinity again, although in a different direction (the
dark blue paths).

Figure 4 shows the transition from the origin of
the parameter space, to the classic Lorenz Attractor
values of ρ = 28, σ = 10, and β = 8

3 . The attractor
is rendered in red.

3.3 Chen-Lee System

Figure 5 displays a rendering of the Chen-Lee system
[13]. The rendering shows reddish paths progress-
ing towards infinity along the z-axis, while the blue
paths tend toward infinity along the y-axis. The light
blue-green paths seem to form limit cycles around
the center of the system. The light blue-green paths
represent an intermediate step between the red and
dark blue parameter configurations. Through the vi-
sualization it is possible to see how that parameter
transition affects the outcome of the system.

The rendering was generated with the following
custom system definition:

parameters = ["a", "b", "c"];

evolution = function(param, x, y, z) {

return [

-y*z+param[0]*x,

x*z-param[1]*y,

(1/3)*x*y-param[2]*z

]

}

4 Conclusion

Through parameter-space ’scrubbing’, the presented
application allows the user to easily visualize how lin-
ear changes in the parameter space effect the state
space of a system. However, this was only one of my
goals for the project.

One of the original goals was to have the appli-
cation detect and display limit cycles and critical
points. This feature was scrapped because detecting
limit cycles proved to be much more difficult than
I had originally thought. A naive implementation
would be O(n2), since it would necessitate checking
each previous point along the current evolution for
each new point. I tried to research better approaches,
but I was not able to find any methods that I could
implement in time.

Another goal that I was not able to meet was
adding a feature that would characterize and visu-
alize the stability of configurations in the parameter

6



space. The idea was to calculate some metric rep-
resenting the stability of the system for each point
in the parameter space, and render a colored glyph
at that point. The problem is that system stabil-
ity is sensitive to initial position as well as parame-
ter configuration. this means that the visualization
would require rendering points in n+m dimensions,
where n is the dimension of the state space and m is
the number of parameters. Most of the the systems
that I used for testing have m = 3 parameters, and
n = 3 state dimensions, so the visualization would re-
quire six dimensions. I was not able to implement any
of the various high-dimensional data mapping tech-
niques in time to make this visualization.

Further work on this project will probably involve
developing these two missing features.

References

[1] Dynamical Systems - Scholarpedia
http://www.scholarpedia.org/article/

Dynamical_systems

[2] Adaptive Step-size http://en.wikipedia.org/

wiki/Adaptive_stepsize

[3] On the Detection of Limit Cycles by the
Variational Velocity Method
http://link.springer.com/article/10.

1023%2FA%3A1006158306350

[4] Benchmarks Game http://benchmarksgame.

alioth.debian.org/u64/benchmark.php?

test=all&lang=v8&lang2=python3&data=u64

[5] Github - marmphco - fluidsim https://github.

com/marmphco/fluidsim/tree/master/src

[6] GLFW - An OpenGL Library
http://www.glfw.org

[7] Cocoa - OS X Technology Overview - Apple
Developer https://developer.apple.com/
technologies/mac/cocoa.html

[8] Attractors in Chaoscope
http://www.chaoscope.org/doc/attractors.

htm#polynomial_a

[9] Bifurcation - Scholarpedia http://www.

scholarpedia.org/article/Bifurcation

[10] List of chaotic Maps - Wikipedia http://en.

wikipedia.org/wiki/List_of_chaotic_maps

[11] Wolfram Demonstrations Project: Lorenz
Attractor http://demonstrations.wolfram.
com/LorenzAttractor/

[12] Stochastic self-modulation of waves in
nonequilibrium media, Soviet Journal of
Experimental and Theoretical Physics,
Rabinovich, M.I. and Fabrikant, A.L.

[13] Generation of hyperchaos from the ChenLee
system via sinusoidal perturbation
http://www.sciencedirect.com/science/

article/pii/S0960077907000410

7


